A Cycling & bikes forum. CycleBanter.com

Go Back   Home » CycleBanter.com forum » rec.bicycles » Techniques
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Selecting An Appropriate Bolt



 
 
Thread Tools Display Modes
  #41  
Old April 19th 17, 11:30 PM posted to rec.bicycles.tech
[email protected]
external usenet poster
 
Posts: 445
Default Selecting An Appropriate Bolt

On Wed, 19 Apr 2017 09:12:06 -0700 (PDT), wrote:

On Monday, April 17, 2017 at 8:29:53 PM UTC-7, John B Slocomb wrote:
On Mon, 17 Apr 2017 16:19:15 -0700 (PDT), Doug Landau
wrote:

On Friday, April 14, 2017 at 11:11:18 AM UTC-7, Frank Krygowski wrote:
On 4/14/2017 12:33 PM, jbeattie wrote:
On Friday, April 14, 2017 at 7:27:06 AM UTC-7, AMuzi wrote:
On 4/14/2017 9:14 AM, Art Shapiro wrote:
On 4/14/2017 5:35 AM, AMuzi wrote:

Original handlebar clamp bolts are Grade 8; readily
available and cheap.
Grade 5 may be strong enough but for pennies difference I
suggest an 8.

How does one get these "readily available" Grade 8 guys?
Deda doesn't seem to have much of a web presence outside of
Italy. Is this a generic item stocked by a good LBS?


Any metric fastener supplier if not your local hardware store.

https://duckduckgo.com/?q=DIN+912+grade+8&t=ha&ia=web

My neighborhood hardware store has them: http://aboysupply.com/wp-content/upl...1024x415_c.png They have a crazy selection of fasteners.

By the way, what's the deal with thread pitch? I always worry I'm getting the wrong pitch, but I guess that the whole "standard/fine/extra fine" thread pitch only kicks in with fasteners over 8mm(?). Otherwise, it's a pre-set. Right?

No. It's just the charts that only kick in at 8. They are clearly both a)written by someone who doesn't actually know, themselves, and b)plagarising heavily from each other, and repeating the other's mistakes.

There are metric fine pitch threads
https://mdmetric.com/tech/thddat3.htm
like 5mm-0.5 instead of 5mm-0.8

That chart is ****ed up. It says fine but lists more than one thread pitch in the first column, and inconsistently shows extra- and super-fine pitches instead.

The commonly found standard M5 bolt is indeed 0.8 pitch, but the commonly found fine pitch M5 is 0.7. 0.5 must be extra-fine or super-fine. Which is why when you buy a tap and dies set it comes with 5-.8 and 5-.7 but not 5-.5.
I think but am not 100% sure that M6 fine is 0.8 not 0.75.

http://www.sears.com/craftsman-39-pc...g&gclsrc=aw.ds

but I've hardly ever come across them in real life.
No? Are you sure - you've never chased munged up pedal threads? Doing so sends you down to the hardware store for an M10-1.0 tap, because your tap and dies set comes with a 10-1.5 (standard) and 10-1.25 (fine).

There is at least one other place where there is a fine thread, an 8, I think, and I think it's the brake pivot bolt, but am not sure I'm remembering correctly.

What's the thread pitch of derailer hangers?


The "fine thread - course thread" discussion if essentially a very
simplistic categorizing of fasteners. The U.S. Unified thread system
provides a sort of rationalization for a UNC/UNF series but that
didn't and doesn't prevent fasteners being made in a large number of
thread pitches. In U.S. sizes we have, for example, the 1/4"x20tpi
(National Course), the 1/4 x 24 (NS), the 1/4 x 28 (NF), the 1/4 x 32
(NEF) and the 1/4 x 40 (NS).


From memory the difference between American fine and course is the depth of the thread. Course threads cut much deeper into the mating piece to achieve the same amount of metal to metal contact as fine threads.

The difference is the number of threads per inch - and since the
angle of the threads is all the same that DOES translate ot differeing
thread depths. A 16TPI thread is roughly 1/16" deep for a 100% thread
- while a 32TPI is roughly 1/32 inch deep - because the threads are
closer together.
Ads
  #42  
Old April 20th 17, 03:52 AM posted to rec.bicycles.tech
John B Slocomb
external usenet poster
 
Posts: 356
Default Selecting An Appropriate Bolt

On Wed, 19 Apr 2017 09:12:06 -0700 (PDT), wrote:

On Monday, April 17, 2017 at 8:29:53 PM UTC-7, John B Slocomb wrote:
On Mon, 17 Apr 2017 16:19:15 -0700 (PDT), Doug Landau
wrote:

On Friday, April 14, 2017 at 11:11:18 AM UTC-7, Frank Krygowski wrote:
On 4/14/2017 12:33 PM, jbeattie wrote:
On Friday, April 14, 2017 at 7:27:06 AM UTC-7, AMuzi wrote:
On 4/14/2017 9:14 AM, Art Shapiro wrote:
On 4/14/2017 5:35 AM, AMuzi wrote:

Original handlebar clamp bolts are Grade 8; readily
available and cheap.
Grade 5 may be strong enough but for pennies difference I
suggest an 8.

How does one get these "readily available" Grade 8 guys?
Deda doesn't seem to have much of a web presence outside of
Italy. Is this a generic item stocked by a good LBS?


Any metric fastener supplier if not your local hardware store.

https://duckduckgo.com/?q=DIN+912+grade+8&t=ha&ia=web

My neighborhood hardware store has them: http://aboysupply.com/wp-content/upl...1024x415_c.png They have a crazy selection of fasteners.

By the way, what's the deal with thread pitch? I always worry I'm getting the wrong pitch, but I guess that the whole "standard/fine/extra fine" thread pitch only kicks in with fasteners over 8mm(?). Otherwise, it's a pre-set. Right?

No. It's just the charts that only kick in at 8. They are clearly both a)written by someone who doesn't actually know, themselves, and b)plagarising heavily from each other, and repeating the other's mistakes.

There are metric fine pitch threads
https://mdmetric.com/tech/thddat3.htm
like 5mm-0.5 instead of 5mm-0.8

That chart is ****ed up. It says fine but lists more than one thread pitch in the first column, and inconsistently shows extra- and super-fine pitches instead.

The commonly found standard M5 bolt is indeed 0.8 pitch, but the commonly found fine pitch M5 is 0.7. 0.5 must be extra-fine or super-fine. Which is why when you buy a tap and dies set it comes with 5-.8 and 5-.7 but not 5-.5.
I think but am not 100% sure that M6 fine is 0.8 not 0.75.

http://www.sears.com/craftsman-39-pc...g&gclsrc=aw.ds

but I've hardly ever come across them in real life.
No? Are you sure - you've never chased munged up pedal threads? Doing so sends you down to the hardware store for an M10-1.0 tap, because your tap and dies set comes with a 10-1.5 (standard) and 10-1.25 (fine).

There is at least one other place where there is a fine thread, an 8, I think, and I think it's the brake pivot bolt, but am not sure I'm remembering correctly.

What's the thread pitch of derailer hangers?


The "fine thread - course thread" discussion if essentially a very
simplistic categorizing of fasteners. The U.S. Unified thread system
provides a sort of rationalization for a UNC/UNF series but that
didn't and doesn't prevent fasteners being made in a large number of
thread pitches. In U.S. sizes we have, for example, the 1/4"x20tpi
(National Course), the 1/4 x 24 (NS), the 1/4 x 28 (NF), the 1/4 x 32
(NEF) and the 1/4 x 40 (NS).


From memory the difference between American fine and course is the depth of the thread. Course threads cut much deeper into the mating piece to achieve the same amount of metal to metal contact as fine threads.



They are both 60 degree threads but with a flat at the base and peak
and I don't remember whether they are the same. Maybe Frank can check
his Machinery's Handbook (if it is modern enough to include metric
threads :-)

  #43  
Old April 20th 17, 03:52 AM posted to rec.bicycles.tech
John B Slocomb
external usenet poster
 
Posts: 356
Default Selecting An Appropriate Bolt

On Wed, 19 Apr 2017 18:23:53 -0400, wrote:

On Wed, 19 Apr 2017 18:43:02 +0700, John B Slocomb
wrote:


Metric thread pitch is described totally different than inch size
bolts. Inch size is threads per inch. Metric thread is thread pitch -
so in inch size bolts, a higher number is a finer thread - in metric a
higher number is a coarser thread. A 6X10 metric bolt is 6mm with a
thread pitch of 1mm crest to crest (or root to root - however you want
to measure it)


Who cares, along as the people involved know what you are talking
about? Ant metering system is just that, a system which works for
those that use it.

The old method of measuring gear ratios on a bicycle was to use "gear
inches" which described the diameter of a wheel that would move the
distance in one revolution. Rather archaic today but made perfect
sense to those that used it.


As far as the "grade" of the bolt - a "grade 8" is NOT always better
than a "grade 5" or even, possibly, in some cases, a "grade 2"

A grade 2 or grade 5 bolt may bend and stretch - and still hold, where
a grade 8 would simply snap. It depends on what kind of load is being
carried by the bolt - and how it is torqued. On the same vein, a bolt
that is undertorqued CAN fail faster than one that is overtorqued. A
properly tensioned bolt is "pre-stretched" just enough that any cyclic
load does not stretch the bolt any farther, so the bolt does not
fatigue in use.


An exciting theory and technically correct. although I would comment
that I've yet to see an under torque bolt break.


It's far from "theory" - I've seen numerous head bolts and manifold
bolts fail that were attributed to being under-torqued on vehicles
that were not properly PDId, and quite a few bolts that failed in
shear because they were not properly tightened, and/or the holes were
not properly de-burred, allowing the bolt to loose tension.
No use arguing with Slocumb though - you'll never get anything
through his thick skull.


You must have a tremendous amount of experience with nuts and bolts.
As I mentioned I've been fooling with them things for about 70 years
now and frankly I've never seen "numerous" head bolts fail. Yes, I've
seen head bolts fail, but I would use the term "rarely" not
"Numerous". I would have to say that if you have seen numerous head
bolts fail then you are associating with some very incompetent
mechanics.

And how does one determine that they were under torqued after they
have failed?
  #44  
Old April 20th 17, 04:56 AM posted to rec.bicycles.tech
[email protected]
external usenet poster
 
Posts: 445
Default Selecting An Appropriate Bolt

On Thu, 20 Apr 2017 09:52:15 +0700, John B Slocomb
wrote:

On Wed, 19 Apr 2017 18:23:53 -0400, wrote:

On Wed, 19 Apr 2017 18:43:02 +0700, John B Slocomb
wrote:


Metric thread pitch is described totally different than inch size
bolts. Inch size is threads per inch. Metric thread is thread pitch -
so in inch size bolts, a higher number is a finer thread - in metric a
higher number is a coarser thread. A 6X10 metric bolt is 6mm with a
thread pitch of 1mm crest to crest (or root to root - however you want
to measure it)

Who cares, along as the people involved know what you are talking
about? Ant metering system is just that, a system which works for
those that use it.

The old method of measuring gear ratios on a bicycle was to use "gear
inches" which described the diameter of a wheel that would move the
distance in one revolution. Rather archaic today but made perfect
sense to those that used it.


As far as the "grade" of the bolt - a "grade 8" is NOT always better
than a "grade 5" or even, possibly, in some cases, a "grade 2"

A grade 2 or grade 5 bolt may bend and stretch - and still hold, where
a grade 8 would simply snap. It depends on what kind of load is being
carried by the bolt - and how it is torqued. On the same vein, a bolt
that is undertorqued CAN fail faster than one that is overtorqued. A
properly tensioned bolt is "pre-stretched" just enough that any cyclic
load does not stretch the bolt any farther, so the bolt does not
fatigue in use.

An exciting theory and technically correct. although I would comment
that I've yet to see an under torque bolt break.


It's far from "theory" - I've seen numerous head bolts and manifold
bolts fail that were attributed to being under-torqued on vehicles
that were not properly PDId, and quite a few bolts that failed in
shear because they were not properly tightened, and/or the holes were
not properly de-burred, allowing the bolt to loose tension.
No use arguing with Slocumb though - you'll never get anything
through his thick skull.


You must have a tremendous amount of experience with nuts and bolts.
As I mentioned I've been fooling with them things for about 70 years
now and frankly I've never seen "numerous" head bolts fail. Yes, I've
seen head bolts fail, but I would use the term "rarely" not
"Numerous". I would have to say that if you have seen numerous head
bolts fail then you are associating with some very incompetent
mechanics.

And how does one determine that they were under torqued after they
have failed?

Notb incompetent mechanics - but poor factory assembly.

Don't take my word for the FACT the problem exists.

See:
http://www.croberts.com/bolt.htm
In particular Picture #10.

As for broken head bolts - see:
https://www.bimmerforums.com/forum/s...ken-Head-Bolts

Also see: http://www.boltscience.com/pages/Failure%20Modes.swf
and:
https://www.hiretorque.co.uk/failure...bolted-joints/
-Particularly item #3
3. Fatigue Failures

Fatigue failures typically occur within a couple of threads, where the
bolt engages into the internal thread. Failure is then reached due to
the high stress gradient within the region.

Fatigue failures can be particularly hazardous because they often
occur with no visible warning signs and the failure is often sudden.
Fatigue failures are often unknowingly avoided in gasketed joints
simply because the required crush for the gasket often dictates a
torque or bolt tension that minimizes the risk of a fatigue failure.
However, changing to a new gasket type later on which requires less
crush may be the initial cause of bolt fatigue failure.

It is not unusual to assume that a bolt has failed due to overload
when it has in fact failed from fatigue, which can also be a
consequence of self-loosening.

Also:
http://www.bluetoad.com/article/Bolt...0/article.html
and:
http://www.onallcylinders.com/2014/0...ener-failures/

Also:
https://www.excelcalcs.com/engineeri...-joints-fail?/
The first cause listed:
Insufficient Clamp force? - Usually by applying a measured torque load
to the nut bolted joints are tightened to achieve a specific clamp
load. Even under the most extreme applied loads, the clamping force
must prevent joint movement between clamped parts. Movement includes
both opening of the joint to form gaps and slipping. Loads applied to
the joint may be axial forces (in the direction of the bolt axis)
and/or shear forces (perpendicular to the bolt axis). If slippage
occurs then the joint may fail by the bolt loosening. If a gap in the
joint opens then a bolt failure by fatigue is more likely to occur.
Typically bolt fatigue failures occur because of insufficient preload
rather than poor fatigue strength of the bolt. Improving the method of
tightening can reduce the scatter in bolt preload and help guarantee
the minimum required clamping force

Pay particular attention to the sectionfollowing the "bolted
joint.xls" link which explains things in pretty plain language.


You may have worked on machines, including aircraft without fully
understanding what you were doing or why.

I have not only worked on cars and agricultural equipment and
industrial equipment (loaders and dozers etc) and been rather
extensively involved with amateur built/homebuilt/experimental
aviation, I have also taught automotive mechanics at the secondary
school AND post secondary (trade) level.
  #46  
Old April 20th 17, 06:37 AM posted to rec.bicycles.tech
Art Shapiro
external usenet poster
 
Posts: 17
Default Selecting An Appropriate Bolt

On 4/17/2017 1:52 PM, Doug Landau wrote:

Get a new stem. This one is a flawed design. There is built-in problem with the shape of the part, and that is a lack of remaining metal around the bolt hole. The stem has been made bigger around the front bolt hole to overcome this, but it still has the 2-bolt-1-failure problem. The traditional shape does not make this concession to ease-of-handlebar-change, and carefully places the single bolt in the rear where there is plenty of metal surrounding the threads.
The traditional design is both less likely to experience a bolt failure, and - in the wild guess dept., be more likely to hold on to the bars and remain usable in the event that one does.


I'm he OP. It so happens that the rear bolt was the one that snapped,
which seems to contradict your assertion about the design's weak point.

Art

  #47  
Old April 20th 17, 10:17 AM posted to rec.bicycles.tech
John B Slocomb
external usenet poster
 
Posts: 356
Default Selecting An Appropriate Bolt

On Wed, 19 Apr 2017 23:56:34 -0400, wrote:

On Thu, 20 Apr 2017 09:52:15 +0700, John B Slocomb
wrote:

On Wed, 19 Apr 2017 18:23:53 -0400,
wrote:

On Wed, 19 Apr 2017 18:43:02 +0700, John B Slocomb
wrote:


Metric thread pitch is described totally different than inch size
bolts. Inch size is threads per inch. Metric thread is thread pitch -
so in inch size bolts, a higher number is a finer thread - in metric a
higher number is a coarser thread. A 6X10 metric bolt is 6mm with a
thread pitch of 1mm crest to crest (or root to root - however you want
to measure it)

Who cares, along as the people involved know what you are talking
about? Ant metering system is just that, a system which works for
those that use it.

The old method of measuring gear ratios on a bicycle was to use "gear
inches" which described the diameter of a wheel that would move the
distance in one revolution. Rather archaic today but made perfect
sense to those that used it.


As far as the "grade" of the bolt - a "grade 8" is NOT always better
than a "grade 5" or even, possibly, in some cases, a "grade 2"

A grade 2 or grade 5 bolt may bend and stretch - and still hold, where
a grade 8 would simply snap. It depends on what kind of load is being
carried by the bolt - and how it is torqued. On the same vein, a bolt
that is undertorqued CAN fail faster than one that is overtorqued. A
properly tensioned bolt is "pre-stretched" just enough that any cyclic
load does not stretch the bolt any farther, so the bolt does not
fatigue in use.

An exciting theory and technically correct. although I would comment
that I've yet to see an under torque bolt break.

It's far from "theory" - I've seen numerous head bolts and manifold
bolts fail that were attributed to being under-torqued on vehicles
that were not properly PDId, and quite a few bolts that failed in
shear because they were not properly tightened, and/or the holes were
not properly de-burred, allowing the bolt to loose tension.
No use arguing with Slocumb though - you'll never get anything
through his thick skull.


You must have a tremendous amount of experience with nuts and bolts.
As I mentioned I've been fooling with them things for about 70 years
now and frankly I've never seen "numerous" head bolts fail. Yes, I've
seen head bolts fail, but I would use the term "rarely" not
"Numerous". I would have to say that if you have seen numerous head
bolts fail then you are associating with some very incompetent
mechanics.

And how does one determine that they were under torqued after they
have failed?

Notb incompetent mechanics - but poor factory assembly.

Don't take my word for the FACT the problem exists.

See:
http://www.croberts.com/bolt.htm
In particular Picture #10.

As for broken head bolts - see:
https://www.bimmerforums.com/forum/s...ken-Head-Bolts

Also see: http://www.boltscience.com/pages/Failure%20Modes.swf
and:
https://www.hiretorque.co.uk/failure...bolted-joints/
-Particularly item #3
3. Fatigue Failures

Fatigue failures typically occur within a couple of threads, where the
bolt engages into the internal thread. Failure is then reached due to
the high stress gradient within the region.

Fatigue failures can be particularly hazardous because they often
occur with no visible warning signs and the failure is often sudden.
Fatigue failures are often unknowingly avoided in gasketed joints
simply because the required crush for the gasket often dictates a
torque or bolt tension that minimizes the risk of a fatigue failure.
However, changing to a new gasket type later on which requires less
crush may be the initial cause of bolt fatigue failure.

It is not unusual to assume that a bolt has failed due to overload
when it has in fact failed from fatigue, which can also be a
consequence of self-loosening.

Also:
http://www.bluetoad.com/article/Bolt...0/article.html
and:
http://www.onallcylinders.com/2014/0...ener-failures/

Also:
https://www.excelcalcs.com/engineeri...-joints-fail?/
The first cause listed:
Insufficient Clamp force? - Usually by applying a measured torque load
to the nut bolted joints are tightened to achieve a specific clamp
load. Even under the most extreme applied loads, the clamping force
must prevent joint movement between clamped parts. Movement includes
both opening of the joint to form gaps and slipping. Loads applied to
the joint may be axial forces (in the direction of the bolt axis)
and/or shear forces (perpendicular to the bolt axis). If slippage
occurs then the joint may fail by the bolt loosening. If a gap in the
joint opens then a bolt failure by fatigue is more likely to occur.
Typically bolt fatigue failures occur because of insufficient preload
rather than poor fatigue strength of the bolt. Improving the method of
tightening can reduce the scatter in bolt preload and help guarantee
the minimum required clamping force

Pay particular attention to the sectionfollowing the "bolted
joint.xls" link which explains things in pretty plain language.


You may have worked on machines, including aircraft without fully
understanding what you were doing or why.


You are probably right although the A.F. thought I was competent. Or I
guess that they did as they kept promoting me and they had me managing
divisions for them. Shoot, they even had me writing the skill level
tests for my career field one time.Then when I retired from that job I
hired on as a mechanic again and ended up some years later being
promoted to "Operations Manager" for a fair to middling sized company
in Indonesia.

I have not only worked on cars and agricultural equipment and
industrial equipment (loaders and dozers etc) and been rather
extensively involved with amateur built/homebuilt/experimental
aviation, I have also taught automotive mechanics at the secondary
school AND post secondary (trade) level.

  #48  
Old April 20th 17, 10:17 AM posted to rec.bicycles.tech
John B Slocomb
external usenet poster
 
Posts: 356
Default Selecting An Appropriate Bolt

On Wed, 19 Apr 2017 22:37:15 -0700, Art Shapiro
wrote:

On 4/17/2017 1:52 PM, Doug Landau wrote:

Get a new stem. This one is a flawed design. There is built-in problem with the shape of the part, and that is a lack of remaining metal around the bolt hole. The stem has been made bigger around the front bolt hole to overcome this, but it still has the 2-bolt-1-failure problem. The traditional shape does not make this concession to ease-of-handlebar-change, and carefully places the single bolt in the rear where there is plenty of metal surrounding the threads.
The traditional design is both less likely to experience a bolt failure, and - in the wild guess dept., be more likely to hold on to the bars and remain usable in the event that one does.


I'm he OP. It so happens that the rear bolt was the one that snapped,
which seems to contradict your assertion about the design's weak point.

Art


And, if I remember correctly, after only 15 years too :-)
  #49  
Old April 20th 17, 02:01 PM posted to rec.bicycles.tech
AMuzi
external usenet poster
 
Posts: 13,447
Default Selecting An Appropriate Bolt

On 4/19/2017 10:56 PM, wrote:
On Thu, 20 Apr 2017 09:52:15 +0700, John B Slocomb
wrote:

On Wed, 19 Apr 2017 18:23:53 -0400,
wrote:

On Wed, 19 Apr 2017 18:43:02 +0700, John B Slocomb
wrote:


Metric thread pitch is described totally different than inch size
bolts. Inch size is threads per inch. Metric thread is thread pitch -
so in inch size bolts, a higher number is a finer thread - in metric a
higher number is a coarser thread. A 6X10 metric bolt is 6mm with a
thread pitch of 1mm crest to crest (or root to root - however you want
to measure it)

Who cares, along as the people involved know what you are talking
about? Ant metering system is just that, a system which works for
those that use it.

The old method of measuring gear ratios on a bicycle was to use "gear
inches" which described the diameter of a wheel that would move the
distance in one revolution. Rather archaic today but made perfect
sense to those that used it.


As far as the "grade" of the bolt - a "grade 8" is NOT always better
than a "grade 5" or even, possibly, in some cases, a "grade 2"

A grade 2 or grade 5 bolt may bend and stretch - and still hold, where
a grade 8 would simply snap. It depends on what kind of load is being
carried by the bolt - and how it is torqued. On the same vein, a bolt
that is undertorqued CAN fail faster than one that is overtorqued. A
properly tensioned bolt is "pre-stretched" just enough that any cyclic
load does not stretch the bolt any farther, so the bolt does not
fatigue in use.

An exciting theory and technically correct. although I would comment
that I've yet to see an under torque bolt break.

It's far from "theory" - I've seen numerous head bolts and manifold
bolts fail that were attributed to being under-torqued on vehicles
that were not properly PDId, and quite a few bolts that failed in
shear because they were not properly tightened, and/or the holes were
not properly de-burred, allowing the bolt to loose tension.
No use arguing with Slocumb though - you'll never get anything
through his thick skull.


You must have a tremendous amount of experience with nuts and bolts.
As I mentioned I've been fooling with them things for about 70 years
now and frankly I've never seen "numerous" head bolts fail. Yes, I've
seen head bolts fail, but I would use the term "rarely" not
"Numerous". I would have to say that if you have seen numerous head
bolts fail then you are associating with some very incompetent
mechanics.

And how does one determine that they were under torqued after they
have failed?

Notb incompetent mechanics - but poor factory assembly.

Don't take my word for the FACT the problem exists.

See:
http://www.croberts.com/bolt.htm
In particular Picture #10.

As for broken head bolts - see:
https://www.bimmerforums.com/forum/s...ken-Head-Bolts

Also see: http://www.boltscience.com/pages/Failure%20Modes.swf
and:
https://www.hiretorque.co.uk/failure...bolted-joints/
-Particularly item #3
3. Fatigue Failures

Fatigue failures typically occur within a couple of threads, where the
bolt engages into the internal thread. Failure is then reached due to
the high stress gradient within the region.

Fatigue failures can be particularly hazardous because they often
occur with no visible warning signs and the failure is often sudden.
Fatigue failures are often unknowingly avoided in gasketed joints
simply because the required crush for the gasket often dictates a
torque or bolt tension that minimizes the risk of a fatigue failure.
However, changing to a new gasket type later on which requires less
crush may be the initial cause of bolt fatigue failure.

It is not unusual to assume that a bolt has failed due to overload
when it has in fact failed from fatigue, which can also be a
consequence of self-loosening.

Also:
http://www.bluetoad.com/article/Bolt...0/article.html
and:
http://www.onallcylinders.com/2014/0...ener-failures/

Also:
https://www.excelcalcs.com/engineeri...-joints-fail?/
The first cause listed:
Insufficient Clamp force? - Usually by applying a measured torque load
to the nut bolted joints are tightened to achieve a specific clamp
load. Even under the most extreme applied loads, the clamping force
must prevent joint movement between clamped parts. Movement includes
both opening of the joint to form gaps and slipping. Loads applied to
the joint may be axial forces (in the direction of the bolt axis)
and/or shear forces (perpendicular to the bolt axis). If slippage
occurs then the joint may fail by the bolt loosening. If a gap in the
joint opens then a bolt failure by fatigue is more likely to occur.
Typically bolt fatigue failures occur because of insufficient preload
rather than poor fatigue strength of the bolt. Improving the method of
tightening can reduce the scatter in bolt preload and help guarantee
the minimum required clamping force

Pay particular attention to the sectionfollowing the "bolted
joint.xls" link which explains things in pretty plain language.


You may have worked on machines, including aircraft without fully
understanding what you were doing or why.

I have not only worked on cars and agricultural equipment and
industrial equipment (loaders and dozers etc) and been rather
extensively involved with amateur built/homebuilt/experimental
aviation, I have also taught automotive mechanics at the secondary
school AND post secondary (trade) level.


+1


--
Andrew Muzi
www.yellowjersey.org/
Open every day since 1 April, 1971


  #50  
Old April 20th 17, 02:47 PM posted to rec.bicycles.tech
[email protected]
external usenet poster
 
Posts: 3,345
Default Selecting An Appropriate Bolt

On Wednesday, April 19, 2017 at 7:52:25 PM UTC-7, John B Slocomb wrote:
On Wed, 19 Apr 2017 09:12:06 -0700 (PDT), wrote:

On Monday, April 17, 2017 at 8:29:53 PM UTC-7, John B Slocomb wrote:
On Mon, 17 Apr 2017 16:19:15 -0700 (PDT), Doug Landau
wrote:

On Friday, April 14, 2017 at 11:11:18 AM UTC-7, Frank Krygowski wrote:
On 4/14/2017 12:33 PM, jbeattie wrote:
On Friday, April 14, 2017 at 7:27:06 AM UTC-7, AMuzi wrote:
On 4/14/2017 9:14 AM, Art Shapiro wrote:
On 4/14/2017 5:35 AM, AMuzi wrote:

Original handlebar clamp bolts are Grade 8; readily
available and cheap.
Grade 5 may be strong enough but for pennies difference I
suggest an 8.

How does one get these "readily available" Grade 8 guys?
Deda doesn't seem to have much of a web presence outside of
Italy. Is this a generic item stocked by a good LBS?


Any metric fastener supplier if not your local hardware store.

https://duckduckgo.com/?q=DIN+912+grade+8&t=ha&ia=web

My neighborhood hardware store has them: http://aboysupply.com/wp-content/upl...1024x415_c.png They have a crazy selection of fasteners.

By the way, what's the deal with thread pitch? I always worry I'm getting the wrong pitch, but I guess that the whole "standard/fine/extra fine" thread pitch only kicks in with fasteners over 8mm(?). Otherwise, it's a pre-set. Right?

No. It's just the charts that only kick in at 8. They are clearly both a)written by someone who doesn't actually know, themselves, and b)plagarising heavily from each other, and repeating the other's mistakes.

There are metric fine pitch threads
https://mdmetric.com/tech/thddat3.htm
like 5mm-0.5 instead of 5mm-0.8

That chart is ****ed up. It says fine but lists more than one thread pitch in the first column, and inconsistently shows extra- and super-fine pitches instead.

The commonly found standard M5 bolt is indeed 0.8 pitch, but the commonly found fine pitch M5 is 0.7. 0.5 must be extra-fine or super-fine. Which is why when you buy a tap and dies set it comes with 5-.8 and 5-.7 but not 5-.5.
I think but am not 100% sure that M6 fine is 0.8 not 0.75.

http://www.sears.com/craftsman-39-pc...g&gclsrc=aw.ds

but I've hardly ever come across them in real life.
No? Are you sure - you've never chased munged up pedal threads? Doing so sends you down to the hardware store for an M10-1.0 tap, because your tap and dies set comes with a 10-1.5 (standard) and 10-1.25 (fine).

There is at least one other place where there is a fine thread, an 8, I think, and I think it's the brake pivot bolt, but am not sure I'm remembering correctly.

What's the thread pitch of derailer hangers?

The "fine thread - course thread" discussion if essentially a very
simplistic categorizing of fasteners. The U.S. Unified thread system
provides a sort of rationalization for a UNC/UNF series but that
didn't and doesn't prevent fasteners being made in a large number of
thread pitches. In U.S. sizes we have, for example, the 1/4"x20tpi
(National Course), the 1/4 x 24 (NS), the 1/4 x 28 (NF), the 1/4 x 32
(NEF) and the 1/4 x 40 (NS).


From memory the difference between American fine and course is the depth of the thread. Course threads cut much deeper into the mating piece to achieve the same amount of metal to metal contact as fine threads.



They are both 60 degree threads but with a flat at the base and peak
and I don't remember whether they are the same. Maybe Frank can check
his Machinery's Handbook (if it is modern enough to include metric
threads :-)


Well, I'm just working from a not very good memory but course threads offer less actual bolt area inside of the threads and hence should not be torqued as high as a fine thread.
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Converting Brake mounting bolt to recessed bolt? Sir Ridesalot Techniques 18 August 23rd 09 12:49 PM
Selecting a Bike Katuzo General 46 July 26th 08 03:11 PM
selecting a BB [email protected] Techniques 5 September 12th 07 03:10 AM
Selecting the right chain heedcase Techniques 10 August 28th 04 02:32 AM
Selecting a new saddle Nick Kew UK 18 December 25th 03 11:47 PM


All times are GMT +1. The time now is 02:45 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 CycleBanter.com.
The comments are property of their posters.